Main
Newton
Newton
Rob Iliffe
0 /
0
How much do you like this book?
What’s the quality of the file?
Download the book for quality assessment
What’s the quality of the downloaded files?
Newton's contributions to an understanding of the heavens and the earth are considered to be unparalleled. This very short introduction explains his scientific theories, and uses Newton's unpublished writings to paint a picture of an extremely complex man whose beliefs had a huge impact on Europe's political, intellectual, and religious landscape.
Year:
2007
Publisher:
Oxford University Press
Language:
english
Pages:
141 / 161
ISBN 10:
1429471190
ISBN 13:
9781429471190
Series:
Very Short Introductions
File:
PDF, 1.90 MB
Your tags:
Download (pdf, 1.90 MB)
- Open in Browser
- Checking other formats...
- Convert to EPUB
- Convert to FB2
- Convert to MOBI
- Convert to TXT
- Convert to RTF
- Converted file can differ from the original. If possible, download the file in its original format.
Report a problem
This book has a different problem? Report it to us
Check Yes if
Check Yes if
Check Yes if
Check Yes if
you were able to open the file
the file contains a book (comics are also acceptable)
the content of the book is acceptable
Title, Author and Language of the file match the book description. Ignore other fields as they are secondary!
Check No if
Check No if
Check No if
Check No if
- the file is damaged
- the file is DRM protected
- the file is not a book (e.g. executable, xls, html, xml)
- the file is an article
- the file is a book excerpt
- the file is a magazine
- the file is a test blank
- the file is a spam
you believe the content of the book is unacceptable and should be blocked
Title, Author or Language of the file do not match the book description. Ignore other fields.
Are you sure the file is of bad quality? Report about it
Change your answer
Thanks for your participation!
Together we will make our library even better
Together we will make our library even better
The file will be sent to your email address. It may take up to 1-5 minutes before you receive it.
The file will be sent to your Kindle account. It may takes up to 1-5 minutes before you received it.
Please note: you need to verify every book you want to send to your Kindle. Check your mailbox for the verification email from Amazon Kindle.
Please note: you need to verify every book you want to send to your Kindle. Check your mailbox for the verification email from Amazon Kindle.
Conversion to is in progress
Conversion to is failed
You may be interested in Powered by Rec2Me
Most frequent terms
newton568
hooke57
aether37
rays37
colours37
argued35
analysis34
comet32
letter32
laws31
leibniz31
church29
conduitt28
century27
gravity25
elements24
referred24
isaac21
comets21
remarked21
boyle21
planets20
prism20
divine19
metals19
calculus18
optical17
writings17
notebook17
locke17
collins16
colour16
coloured16
barrow15
stukeley15
trumpet15
vortex14
trinity14
Related Booklists
1
|
2
|
Newton: A Very Short Introduction Very Short Introductions are for anyone wanting a stimulating and accessible way in to a new subject. They are written by experts, and have been published in more than 25 languages worldwide. The series began in 1995, and now represents a wide variety of topics in history, philosophy, religion, science, and the humanities. Over the next few years it will grow to a library of around 200 volumes – a Very Short Introduction to everything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very Short Introductions available now: ANARCHISM Colin Ward ANCIENT EGYPT Ian Shaw ANCIENT PHILOSOPHY Julia Annas ANCIENT WARFARE Harry Sidebottom ANGLICANISM Mark Chapman THE ANGLO-SAXON AGE John Blair ANIMAL RIGHTS David DeGrazia ARCHAEOLOGY Paul Bahn ARCHITECTURE Andrew Ballantyne ARISTOTLE Jonathan Barnes ART HISTORY Dana Arnold ART THEORY Cynthia Freeland THE HISTORY OF ASTRONOMY Michael Hoskin Atheism Julian Baggini Augustine Henry Chadwick BARTHES Jonathan Culler THE BIBLE John Riches THE BRAIN Michael O’Shea BRITISH POLITICS Anthony Wright Buddha Michael Carrithers BUDDHISM Damien Keown BUDDHIST ETHICS Damien Keown CAPITALISM James Fulcher THE CELTS Barry Cunliffe CHOICE THEORY Michael Allingham CHRISTIAN ART Beth Williamson CHRISTIANITY Linda Woodhead CLASSICS Mary Beard and John Henderson CLAUSEWITZ Michael Howard THE COLD WAR Robert McMahon CONSCIOUSNESS Susan Blackmore CONTEMPORARY ART Julian Stallabrass Continental Philosophy Simon Critchley COSMOLOGY Peter Coles THE CRUSADES Christopher Tyerman CRYPTOGRAPHY Fred Piper and Sean Murphy DADA AND SURREALISM David Hopkins Darwin Jonathan Howard THE DEAD SEA SCROLLS Timothy Lim Democracy Bernard Crick DESCARTES Tom Sorell DESIGN John Heskett DINOSAURS David Norman DREAMING J. Allan Hobson DRUGS Leslie Iversen THE EARTH Martin Redfern ECONOMICS Partha Dasgupta EGYPTIAN MYTH Geraldine Pinch EIGHTEENTH-CENTURY BRITAIN Paul Langford THE ELEMENTS Philip Ball EMOTION Dylan Evans EMPIRE Stephen Howe ENGELS Terre; ll Carver Ethics Simon Blackburn The European Union John Pinder EVOLUTION Brian and Deborah Charlesworth EXISTENTIALISM Thomas Flynn FASCISM Kevin Passmore FEMINISM Margaret Walters THE FIRST WORLD WAR Michael Howard FOSSILS Keith Thomson FOUCAULT Gary Gutting THE FRENCH REVOLUTION William Doyle FREE WILL Thomas Pink Freud Anthony Storr FUNDAMENTALISM Malise Ruthven Galileo Stillman Drake Gandhi Bhikhu Parekh GLOBAL CATASTROPHES Bill McGuire GLOBALIZATION Manfred Steger GLOBAL WARMING Mark Maslin HABERMAS James Gordon Finlayson HEGEL Peter Singer HEIDEGGER Michael Inwood HIEROGLYPHS Penelope Wilson HINDUISM Kim Knott HISTORY John H. Arnold HOBBES Richard Tuck HUMAN EVOLUTION Bernard Wood HUME A. J. Ayer IDEOLOGY Michael Freeden Indian Philosophy Sue Hamilton Intelligence Ian J. Deary INTERNATIONAL MIGRATION Khalid Khoser ISLAM Malise Ruthven JOURNALISM Ian Hargreaves JUDAISM Norman Solomon Jung Anthony Stevens KAFKA Ritchie Robertson KANT Roger Scruton KIERKEGAARD Patrick Gardiner THE KORAN Michael Cook LINGUISTICS Peter Matthews LITERARY THEORY Jonathan Culler LOCKE John Dunn LOGIC Graham Priest MACHIAVELLI Quentin Skinner THE MARQUIS DE SADE John Phillips MARX Peter Singer MATHEMATICS Timothy Gowers MEDICAL ETHICS Tony Hope MEDIEVAL BRITAIN John Gillingham and Ralph A. Griffiths MODERN ART David Cottington MODERN IRELAND Senia Pašeta MOLECULES Philip Ball MUSIC Nicholas Cook Myth Robert A. Segal NATIONALISM Steven Grosby NEWTON Robert Iliffe NIETZSCHE Michael Tanner NINETEENTH-CENTURY BRITAIN Christopher Harvie and H. C. G. Matthew NORTHERN IRELAND Marc Mulholland PARTICLE PHYSICS Frank Close paul E. P. Sanders Philosophy Edward Craig PHILOSOPHY OF LAW Raymond Wacks PHILOSOPHY OF SCIENCE Samir Okasha PHOTOGRAPHY Steve Edwards PLATO Julia Annas POLITICS Kenneth Minogue POLITICAL PHILOSOPHY David Miller POSTCOLONIALISM Robert Young POSTMODERNISM Christopher Butler POSTSTRUCTURALISM Catherine Belsey PREHISTORY Chris Gosden PRESOCRATIC PHILOSOPHY Catherine Osborne Psychology Gillian Butler and Freda McManus PSYCHIATRY Tom Burns QUANTUM THEORY John Polkinghorne THE RENAISSANCE Jerry Brotton RENAISSANCE ART Geraldine A. Johnson ROMAN BRITAIN Peter Salway THE ROMAN EMPIRE Christopher Kelly ROUSSEAU Robert Wokler RUSSELL A. C. Grayling RUSSIAN LITERATURE Catriona Kelly THE RUSSIAN REVOLUTION S. A. Smith SCHIZOPHRENIA Chris Frith and Eve Johnstone SCHOPENHAUER Christopher Janaway SHAKESPEARE Germaine Greer SIKHISM Eleanor Nesbitt SOCIAL AND CULTURAL ANTHROPOLOGY John Monaghan and Peter Just SOCIALISM Michael Newman SOCIOLOGY Steve Bruce Socrates C. C. W. Taylor THE SPANISH CIVIL WAR Helen Graham SPINOZA Roger Scruton STUART BRITAIN John Morrill TERRORISM Charles Townshend THEOLOGY David F. Ford THE HISTORY OF TIME Leofranc Holford-Strevens TRAGEDY Adrian Poole THE TUDORS John Guy TWENTIETH-CENTURY BRITAIN Kenneth O. Morgan THE VIKINGS Julian D. Richards Wittgenstein A. C. Grayling WORLD MUSIC Philip Bohlman THE WORLD TRADE ORGANIZATION Amrita Narlikar Available soon: AFRICAN HISTORY John Parker and Richard Rathbone CHAOS Leonard Smith CHILD DEVELOPMENT Richard Griffin CITIZENSHIP Richard Bellamy HIV/AIDS Alan Whiteside HUMAN RIGHTS Andrew Chapham RACISM Ali Rattansi For more information visit our web site www.oup.co.uk/general/vsi/ Rob Iliffe Newton A Very Short Introduction 1 3 Great Clarendon Street, Oxford o x 2 6 d p Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Rob Iliffe 2007 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published as a Very Short Introduction 2007 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organizations. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by RefineCatch Ltd, Bungay, Suffolk Printed in Great Britain by Ashford Colour Press, Gosport, Hampshire ISBN 978–0–19–929803–7 1 3 5 7 9 10 8 6 4 2 Acknowledgements I would like to thank Martin Beagles, John Young, Luciana O’Flaherty, Larry Stewart, and Sarah Dry for commenting on earlier versions of this work, and also for suggesting improvements. This page intentionally left blank Preface In Victorian Britain, every schoolboy knew that Sir Isaac Newton was an unrivalled mathematical and scientific genius, and most would have been able to give a basic account of his central discoveries. In optics, Newton found that white light was not a fundamental element within nature but was composed of more basic, primary rays being mixed together. Bodies appeared a particular colour because they had a disposition to reflect or absorb certain colours rather than others. In the realm of mathematics, Newton discovered the binomial theorem for expanding the sum of two variables raised to any given power, as well as the basic laws of calculus. This treated the rate of change of any variable (the shape of a curve or the velocity of a moving object) at any moment, and also offered techniques for measuring areas and volumes under curves (amongst other things). Both his mathematical and optical work took many decades to be fully accepted by contemporaries, the first because his work was shown only to a handful of contemporaries, and the second because many found it hard to reproduce and too revolutionary to be easily grasped. The crowning glory of Newton’s system was contained in his Principia Mathematica of 1687, in which he introduced the three laws of motion and the incredible notion of Universal Gravitation – the idea that all massive bodies continuously attracted all other bodies according to a mathematical law. Using completely novel concepts such as ‘mass’ and ‘attraction’, Newton announced in his laws of motion (1) that all bodies continued in their state of motion or rest unless affected by some external force; (2) that the change in state of all bodies was proportional to the force that caused that change and took place in the direction exerted by that force; and (3) that to every action there was an equal and opposite reaction. Investigating the consequences of his work in this area formed the basis of celestial mechanics in the 18th century and made possible a new and what we take to be correct physics (special and general relativistic effects excepted) of the Earth and heavens. Not for nothing was Newton held by the vast majority of educated people as the Founder of Reason. Apart from this, the elites of Victorian Britain grappled with more difficult aspects of Newton’s life and work, for it was also known that Sir Isaac was both a committed alchemist and a radical heretic. Incontrovertible evidence also showed that he had behaved in a reprehensible manner towards a number of his contemporaries. Since then, explaining his personality and addressing the problem of reconciling the ‘rational’ and ‘irrational’ aspects of his work have continued to challenge historians. Moreover, the fact that many important papers only became available for serious investigation in the 1970s means that a well-balanced picture of his work has only become possible in the last few decades. Although it has long been known that he had these apparently outlandish interests – which he undoubtedly understood to be more significant than his more ‘respectable’ pursuits – recent popular biographies of Newton have continually played up these less orthodox elements as if they are being described for the first time. Nevertheless, these books have neither offered new insights, nor do they make use of the astonishing materials that have been made available online in the last few years. Most of these works also make overblown claims about the links between various spheres of Newton’s intellectual activity. This introduction aims to redress these problems by taking into account recent scholarly work as well as the newly accessible online transcriptions of writings; as it happens, the Newton that emerges is much stranger than has been visible in recent accounts. This page intentionally left blank Contents List of illustrations xv 1 2 3 4 5 6 7 8 9 10 A national man 1 Playing philosophically The marvellous years 8 20 The censorious multitude 41 A true hermetic philosopher One of God’s chosen few The divine book 54 72 83 In the city 103 Lord and master of all 112 Centaurs and other animals 126 Further reading 133 Index 135 This page intentionally left blank List of illustrations 1 Conduitt’s bust of Newton, executed by J. M. Rysbrack 8 The Philosopher’s Stone 2 Courtesy of Dr Milo Keynes 2 The Source for Newton’s water-powered clock 12 3 Cartesian vortices 57 © The Dibner Institute, Cambridge, Mass. 9 The Whore of Babylon 78 © The Trustees of the British Museum 24 4 Perpetual motion machines powered by gravitational waves 31 10 The path of an object dropped vertically from a tall tower 84 5 Newton’s drawing of his deformation of his eye 11 Hooke’s hypothesis 85 12 Newton’s response 85 13 Flamsteed’s suggested path for the comet of winter 1680–1 87 40 By permission of the Syndics of Cambridge University Library 6 A sketch of Newton’s telescope 7 The crucial experiment Leen Ritmeyer 44 Courtesy of the Royal Society 14 47 Courtesy of the Warden and Fellows of New College, Oxford Newton’s alternative path for the comet 89 15 Newton’s proof of Kepler’s Second Law 17 91 Newton in 1726, painted by Enoch Seeman 131 Courtesy of Dr Milo Keynes 16 Newton’s proof that an inverse-square law governs elliptical orbits 92 The publisher and the author apologise for any errors or omissions in the above list. If contacted it will be pleased to rectify these at the earliest opportunity. Chapter 1 A national man Unconscious since late on the previous Saturday evening, Sir Isaac Newton died soon after 1 a.m. on Monday 20 March 1727 at the age of 84. He was attended at his passing by his physician Richard Mead, who later told the great French philosophe Voltaire that on his deathbed Newton had confessed he was a virgin. Newton was also looked after in his final hours by his half-niece Catherine and her husband John Conduitt, who had acted as a sort of personal assistant to Newton in his final years. Despite many demands on his time, Conduitt almost single-handedly organized the commemoration of the great man he had come to know, and he heroically managed to supervise the collection of virtually all the significant information that we have concerning Newton’s private life. He was responsible for arranging Newton’s funeral at Westminster Abbey at the end of March 1727, and he commissioned Alexander Pope to compose the epitaph on Newton’s tomb. In the following years he authorized the execution of numerous paintings and busts of his hero by the greatest British and foreign artists of the day. Over a number of years Conduitt tried to write the definitive ‘Life’ of Newton, although he never completed the task. He had recorded details of some conversations he had had with Newton but for more detail on Newton’s scientific work he asked a number of people to send in their reminiscences. A week after Newton’s death he wrote 1 Newton 1. Conduitt’s own bust of Newton, executed by J. M. Rysbrack to Bernard de Fontenelle, Permanent Secretary of the Paris Académie Royale des Sciences, offering to supply the Frenchman with material that he could use in his ‘Eloge’ of Newton. Conduitt saw this as a chance to secure his relative’s reputation in the country that had been most unwilling to recognize Newton’s pre-eminence in science and mathematics. It would not be until the late 1730s that Newton’s reputation was secure in France, and in the immediate aftermath of his death Conduitt was keen that French 2 and other non-British scholars should be aware of Newton’s priority in devising the calculus, an accolade most French scholars still accorded to the German polymath Gottfried Leibniz. Over the summer of 1727, Conduitt worked on a ‘Memoir’ of Newton, which he sent off to Fontenelle in July. Fontenelle’s ‘Eloge’ was read to the Académie in November 1727. He gave a good account of Newton’s scientific and mathematical development, accepting that virtually all of his great discoveries had been made in his early twenties. He disagreed with many of the tenets found in the Principia, especially that of the notion of ‘attraction’, but he was effusive about its overall significance. Although he realized that Newton disagreed with many of the theories of the great French mathematician and philosopher René Descartes, Fontenelle noted that they had both attempted to base science on mathematical foundations, and that both were geniuses in their own time and manner. The Eloge was immediately translated into English, becoming the dominant source for all English-language biographies for over a century. Other works appeared very quickly, one of which, William Whiston’s Collection of Authentick Records, was the first text to 3 A national man Conduitt’s ‘Memoir’ gave a factual if adulatory history of Newton’s intellectual and moral life, and the latter was described as ‘pure & unspotted in thought word & deed’. He was astonishingly humble, exhibited great charitableness and such a sweetness and meekness that he would often shed tears at a sad story. He loved liberty and the Hanoverian regime of George I, ‘abhorred and detested’ persecution, and mercy to beast and Man was ‘the darling topick he loved to dwell upon’. Conduitt included an account of Newton’s early development at Cambridge, and added a one-sided version of the priority dispute with Leibniz. Not only had Leibniz not been the first to invent it but he ‘never understood it enough to apply it to the system of the Universe which was the great & glorious use Sir Isaac made of it’. Newton publicly challenge the view of Newton as a shining white knight. Whiston was Newton’s successor as Lucasian Professor at Cambridge but had been ejected from Cambridge in 1710 for espousing heretical religious views similar to those held by Newton. Revealing Newton’s radical theological views for the first time, Whiston contrasted Newton’s ‘cautious Temper and Conduct’ with his own ‘openness’, but remarked that Newton could not hide his own momentous discoveries in theology, ‘notwithstanding his prodigiously fearful, cautious, and suspicious Temper’. Even before he read Whiston, Conduitt was peeved both at the even-handed way with which Fontenelle had compared Newton with Descartes and at his treatment of the priority dispute. He immediately wrote again to a number of pro-Newtonians, pleading in February 1728 that ‘As Sir I. Newton was a national man I think every one ought to contribute to a work intended to do him justice.’ Of those letters he received in response, the most interesting were two from Humphrey Newton (no relation), who as Newton’s amanuensis (secretary) had a unique insight into Newton’s behaviour during the years in which he had composed the Principia (1684–7). According to Humphrey, Newton would sometimes take ‘a sudden stand, turn’d himself about, run up the Stairs, like another Archimedes, with an eureka, fall to write on his Desk standing, without giving himself the Leasure to draw a Chair to sit down in’. Newton at this time apparently received only a select band of scholars to his chambers, including John Francis Vigani, a chemistry lecturer at Trinity. Vigani got on well with Newton until, according to Catherine Conduitt, Vigari ‘told a loose story about a Nun’. John Conduitt had already received crucial information from the antiquarian William Stukeley, who had moved to Grantham shortly before Newton’s death. Since this was where Newton had attended the local grammar school while lodging with the local apothecary, it was an ideal place to collect information relating to Newton’s youth. By 1800 some of the Stukeley material but little from the Conduitt papers had been published. In the early 19th century, however, new 4 information profoundly altered the way people thought of Newton. In 1829 a translation of a recent biography of Newton by Jean-Baptiste Biot revealed that he had suffered a breakdown in the early 1690s. Still more damagingly, in the 1830s a barrage of upsetting evidence emerged from the papers of the first Astronomer Royal, John Flamsteed, which presented a tarnished view of Newton’s demeanour. Thereafter, Victorians vied to offer accounts of Newton’s life and works. Most importantly, David Brewster’s Memoirs of the Life, Writings and Discoveries of Sir Isaac Newton (1855), a greatly revised version of his Life of Sir Isaac Newton (1831), became the dominant biography for over a century. He tried valiantly to deal with Newton’s commitment to alchemy, his unorthodox religious opinions, and his often graceless treatment of both friend and foe, but was ultimately unwilling to recognize the full extent to which Newton fell short of perfection. The great economist John Maynard Keynes had attended part of the Sotheby sale, and he set his energies towards acquiring all of 5 A national man In the early 1870s the fifth Lord Portsmouth, a distant descendant of Catherine Conduitt and owner of Newton’s papers, generously decided to donate Newton’s ‘scientific’ manuscripts to the nation. A committee was set up at Cambridge University to assess the significance of the collection, and its results were reported in a catalogue of the papers in 1888. The non-scientific papers, including Newton’s alchemical and theological writings, were generally deemed of little interest and they remained in the Portsmouth family until they were sold off at Sotheby’s in 1936 for the ridiculously small sum of just over £9,000. A syndicate gradually acquired most of the theological papers from dealers, and ultimately they were bought up by the collector Abraham Yahuda, an expert in semitic philology. Yahuda died in 1951 and, although he was an anti-Zionist, his astonishing collection of Newton’s papers came into the possession of the Jewish National and University Library in the Hebrew University of Jerusalem after a court case lasting nearly a decade. Newton’s alchemical papers, as well as all the ‘personal’ papers in the hand of John Conduitt. By 1942, the tercentenary of Newton’s birth, Keynes was in possession of the vast majority of Newton’s alchemical papers, along with some theological tracts. Although he was preoccupied by the demands of the Second World War, Keynes gave a talk based on these materials as part of the muted tercentenary celebrations. His Newton was far more extraordinary than the person presented by previous biographers, being a ‘Judaic monotheist of the School of Maimonides’, neither a ‘rationalist’ nor ‘the first and greatest of the modern age of scientists’, but the last of the magicians, the last of the Babylonians and Sumerians, the last great mind which looked out on the visible and intellectual world with the same eyes as those who began to build our Newton intellectual inheritance rather less than 10,000 years ago. Newton saw the twin worlds of nature and obscure texts as one giant riddle that could be unravelled by decoding ‘certain mystic clues which God had lain about the world to allow a sort of philosopher’s treasure hunt to the esoteric brotherhood’. His writings on alchemical and theological topics were, Keynes argued, ‘marked by careful learning, accurate method, and extreme sobriety of statement’ and were ‘just as sane as the Principia’. The two most influential scholarly biographies of the late 20th century both made extensive use of manuscript materials. Frank Manuel’s A Portrait of Isaac Newton of 1968 offers a psychoanalytical account of Newton’s personality that is heavily reliant upon the assumption that Newton’s unconscious behaviour expressed itself ‘primarily in situations of love and hate’. According to Manuel, the source of Newton’s psychic problems lay in the fact that she remarried when Newton was only 3 years old. Having already lost his biological father, who died only months before he was born, Newton became hostile to his stepfather and devoted himself to the one Father he could really recognize – God. Manuel showed how the traumatic experiences of Newton’s youth were 6 internalized, and the brilliant but tormented young Puritan became the ageing despot of the early 18th century. In his more orthodox Never at Rest: A Scientific Biography of Isaac Newton of 1980, Richard S. Westfall took Newton’s work as the central aspect of his life. Drawing from the full range of Newton’s manuscripts that were now available to scholars, his ‘scientific biography’ engaged with every aspect of Newton’s intellectual interests, although his scientific career ‘furnishes the central theme’. While he deals ably with Newton’s intellectual accomplishments, it is apparent that Westfall’s great admiration for this part of Newton’s life does not extend to his personal conduct. Ultimately Westfall came to loathe the man whose works he had studied for over 2 decades. He was not the first to feel this way about the Great Man. A national man 7 Chapter 2 Playing philosophically According to the calendar then in use in England, Newton was born on Christmas Day 1642 (4 January 1643 in most of Continental Europe). The first decade of his life witnessed the horror of the civil wars between parliamentary and royalist forces in the 1640s, culminating in the beheading of Charles I in January 1649. His uncle and stepfather were rectors of local parishes, and they seem to have existed without much harassment from the church authorities convened by Parliament to check for religious ‘abuses’. In his second decade he lived under the radical Protestant Commonwealth, which was replaced in 1660 when Charles II was restored to the throne. Newton was born into a relatively prosperous family and was brought up in a devout atmosphere. His father, also Isaac, was a yeoman farmer who in December 1639 inherited both land and a handsome manor in the Lincolnshire parish of Woolsthorpe. His mother, Hannah Ayscough, came from the lower gentry and (as was common for the period) seems to have been educated at only a rudimentary level. Nevertheless, her brother William had graduated from Trinity College Cambridge in the 1630s and would be influential in directing Newton to the same institution. Newton’s father, apparently unable to sign his name, died in early October 1642, almost three months before the birth of his son. Newton told Conduitt that he had been a tiny and sick baby, thought to be unlikely to survive; two women sent to get help from a 8 Newton went to two local schools until he was 12, after which he went to Grantham Grammar School. Here he lodged with a local apothecary, Joseph Clark, whose shop proved to be a great source of information. A descendant of Clark told William Stukeley that Newton showed an immense interest in the abundant medicines and chemicals, and Stukeley noted that he spent a great deal of time gathering herbs, probably learning about their properties from Clark’s apprentices. Newton lived with Clark’s stepchildren, one of whom, Catherine, who grew up to be a Mrs Vincent, provided abundant information about the prodigy. Everyone Stukeley met recounted ‘the extraordinary pregnancy of his genius’ for building machines and told him ‘that instead of playing among the other boys, when from school, he always busyed himself at home, in making knickknacks of divers sorts, & models in wood, of whatever his fancy led him to’. Mrs Vincent, allegedly the object of amorous attention from the young inventor, recorded that his schoolfellows were ‘not very affectionate’ towards him, aware ‘that he had more 9 Playing philosophically local gentlewoman stopped to sit down on the way there, as they were certain the baby would be dead on their return. Surviving against the odds, Newton was brought up by his mother until the age of 3, when she was approached with an offer of marriage by Barnabas Smith, an ageing vicar of a local parish. Smith was wealthy, and they married in January 1646 after he had promised to leave some land to her first born. Spending most of her time with her new spouse, she produced three more children before his death in 1653 (one of whom would be the mother of Catherine Conduitt). Although John Conduitt waxed lyrical about Hannah’s general virtues, and was careful to point out that she was ‘an indulgent parent’ to all the children, he emphasized that young Isaac was her favourite. Whatever the truth of this, Newton’s own evidence indicates that, as a teenager, he had an extremely difficult relationship with his mother, and historians have always found it difficult to make Conduitt’s account tally with the fact that for seven years Newton was effectively left in Woolsthorpe to be brought up by his maternal grandmother. Newton ingenuity’ than they did. Instead, little Isaac was ‘always, a sober, silent, thinking lad’, who never played with boys but who would occasionally make dolls house furniture for the girls ‘to set their babys, and trinkets on’. Newton built up ‘a whole shop of tools’ in Grantham, spending all the money his mother gave him on saws, chisels, hatchets, hammers and the like, ‘which he would use with as much dexterity, as if he had been brought up to the trade’. Many of the machines described by Mrs Vincent and others had been originally set out in a book by John Bate entitled Mysteries of Nature and Art, part of an extremely popular genre of ‘mathematical magic’ books that contained numerous recipes and drawings of machines. Newton was already unwilling simply to appropriate information without developing it in a dramatic fashion. Not content with reproducing a simple windmill described in Bate, he went to see a real version being constructed in a neighbouring village, ‘was daily with the workmen’ and ‘obtain’d so exact a notion of the mechanism of it, that he made a true, & perfect model of it’. He went beyond his prototype and adjusted the mechanism so that the sails were powered by a mouse, which drove a wheel in its efforts to reach some corn. While Stukeley’s informants disagreed as to its exact mechanism, they concurred that people would come from miles around to see Isaac’s ‘mouse miller’. Stukeley perceptively noted that ‘ludicrous’ (i.e. playful) devices commonly grabbed his attention. Apart from the mouse miller and the dolls’ furniture, Newton examined the fabric and dimensions of a simple kite, built a better example, and attached a candle-lit lantern to it, frightening the countryfolk and giving them much to discuss as they drank their beer. As in the cases of the windmill and the kite, Newton made a wooden clock and then immediately built a better one. This improved version, which had a dial, was powered by a steady trickle of water that he supplied each morning, and was made from a box given to him by Humphrey Babington. Babington, the brother of Mrs Clark (a close friend of Hannah Smith), had been ejected from Trinity 10 College for refusing to take the engagement oath of allegiance to the Commonwealth, and would play a significant role in Newton’s life over the following decades. Extending his virtuosity still further, Newton graduated to complex sundials, turning various features of Clark’s house into different sorts of clock and, according to Stukeley, ‘showing the greatness, & extent of his thought by drawing long lines, tying long strings with running balls upon them; driving pegs into the walls, to mark hours, half hours & quarters’. He made an ‘almanac’ of these lines, ‘knowing the day of the month by them; the suns entry into signs, the equinoxes, & solstices’. ‘Isaac’s dials’, like many of his other accomplishments, became well known in the parish. Perhaps the greatest of his juvenile achievements, Stukeley believed that these were the origins of his fascination for heavenly motions. Newton’s artistic bent at this time can be gauged by a series of notes on Bate’s book, entered into a notebook that he purchased in 1659. These notes attest to Newton’s concern with the practical aspects of drawing, and also his interest in producing a wide variety of coloured inks and paints, whether from animals, vegetables, and minerals, or by mixing pre-existing colours. Just over a decade later, the last of these topics would make him famous. Other instructions concerned how to make fishbait and different ways, not all of them overly complicated, of catching birds by making them drunk. Bate’s book also contained recipes for universal salves and ointments, a number of which Newton noted down. Indeed, one of the few things later recalled by John Wickins, his roommate of 20 years at Cambridge, was that Newton would often take a grisly self-prepared 11 Playing philosophically Newton also excelled in artistic pursuits, such as drawing and even the composing of poetry, though his penchant for verse would prove temporary. He covered the walls of his attic room with charcoal drawings of animals, men, plants and mathematical figures, and scratched his name into the shelves. In the middle of the 20th century, geometrical drawings, undoubtedly by Newton, were discovered etched onto the stonework of Woolsthorpe Manor. Newton 2. The source for Newton’s design for a water-powered clock, from John Bate’s Mysteries of Nature and Art concoction (‘Lucatello’s balsam’) as a preservative. Some notes came from John Wilkins’s Mathematical Magick, a popular work that purveyed similar information to Bate, while other entries in the notebook concerned different ways to produce perpetual motion, a topic of extreme interest in the following decades. This immersion in worlds of practical ingenuity not only offered portents of his great future, but led directly to it. Indeed, Stukeley gave a superb account of how Newton’s early obsessions related to his later triumphs. He pointed out that Newton’s early mastery at using mechanical tools, along with his expertise in drawing and designing, was extremely useful for his experimental skill and ‘prepar’d for him a solid foundation to exercise his strong reasoning 12 facultys upon’. Uniquely Newton had all the qualities for becoming a great natural philosopher, such as ‘profound judgement’, ‘invincible constancy, & perseverance in finding out his solutions’, ‘a vast strength of mind, in protracting his reasonings [and] his chain of deductions’, and an ‘incomparable skill in algebraic, & the like methods of notation’. Like all children he was an imitator, but for Stukeley ‘he was in reality born a philosopher. Learning, & accident, & industry pointed out to his discerning eye some few, simple & universal truths’, which he gradually extended ‘till he unfolded the œconomy of the macrocosm’. A godly child Some episodes were those common to any teenager in his village. 13 Playing philosophically Absorbed as he was in making his devices, the gifted country boy was a deeply unhappy youth. Late in May 1662 he recorded a list in shorthand of all the sins he had committed in the previous decade, and for a short time he noted down all the misdemeanours committed while at Cambridge. The term ‘Puritan’ is strictly false as a description of Newton’s religious doctrine but the radical Protestant ethical values associated with this term accurately describe the person who appears in the entries. Many of the sins cover activities performed on the Sabbath (‘Thy day’), when godly Christians were supposed to rest. On various Sundays in the 1650s, Newton read a frivolous book, ate an apple in chapel, and made a feather, a clock, a mousetrap, some rope, and in the evening some pies. He confessed to ‘idle discourse’ on God’s day, so that it is not surprising that he also carelessly heard and committed to memory various sermons, while he also recorded that he completely missed chapel on one occasion. Sometimes he had set his heart on learning and money more than on God, preferring ‘worldly things’ instead, and indeed many of the sins recall his failure to live as a godly man. ‘Not living according to my belief’ and ‘neglecting to pray’, he had become distant from God, failing to love God for Himself and failing to ‘long’ for God’s ordinances. Newton He put a pin in another boy’s hat to ‘prick’ him, refused to come home when his mother told him to, and lied to his mother and grandmother about having a crossbow. At other times, he ‘fell out’ with servants. Food crimes were also prominent: he stole cherry cobs from Edward Storer, Clark’s stepson, and pilfered plums and sugar from his mother’s foodbox. He even confessed to gluttony while he was ill, and indeed the first entries in the short list of sins committed when he was a student at Cambridge were for the same offence. Other comments in the first list portray darker elements of his psyche. He punched one of his sisters, struck ‘many’, and beat up Arthur Storer, Edward’s brother. The precise meaning of ‘Having unclean thoughts words and actions and dreams’ in Newton’s list is unclear, as is his lament that he had used ‘unlawful means’ to bring himself out of ‘distress’. Real loathing shows through his recollection of ‘wishing death and hoping it to some’, and most horrifying of all is the distant memory of having threatened to burn his stepfather and mother along with their house. Newton also compiled a list of common words arranged alphabetically in Francis Gregory’s Nomenclatura brevis reformata of 1651. To terms like ‘Father’, ‘Wife’, and ‘Widdow’, Newton added words such as ‘Fornicator’ and ‘Whoore’ not found in Gregory, expressions that perhaps refer to his view of his mother and stepfather. Newton’s anger manifested itself in other areas of his life. According to Conduitt, who knew him well, resentment and the desire to emulate had been the forces propelling Newton to outdo all others at the start of his academic career. Newton often told him a story about his early days at the grammar school when he was at the bottom of the class, a narrative that is possibly connected with his ‘confession’ about beating Arthur Storer. One day he was kicked in the stomach on his way to school. After lessons had ended he fought in the churchyard with his assailant, and although Newton ‘was not so lusty as his antagonist he had so much more spirit & resolution that he beat him till he declared he would fight no more’. Later, the schoolmaster’s son goaded him into forcing his antagonist’s face into the side of the church. After this, Newton 14 strove to outdo his opponent in learning, not stopping until he had risen above him in the pecking order. Inexorably, he rose to become top of the school. It is at this point that narratives of Newton’s development begin to portray him as an unworldly scholar rather than as a gifted mechanic. Later, a number of different pieces of evidence indicate that he became famous for his unworldly or ‘insensate’ behaviour when he went to Cambridge. A hopeless manager of his family’s affairs, he would bribe the servant to act on his behalf, and he would find scholarly refuge in the attic where he had lodged while at the school, engrossed in a pile of medical and scientific tomes that had been left there. On other occasions, he would simply lie under a hedge or a tree and read a book. Once Newton’s horse slipped his bridle, and he walked on unawares for miles, engrossed in a book he was reading. His mother was ‘not a little offended at his bookishness’, while the servants called him ‘a silly boy’ who ‘would never be good for any thing’. 15 Playing philosophically His extracurricular activities had an adverse effect on his schooling but such was his ability that he could resume his academic work and outperform his schoolfellows whenever he wanted. Stukeley noted that ‘dull boys were sometimes put over him, in form, but this always excited him to redouble his pains, to overtake them’. The headmaster of the school, John Stokes, seems to have spotted Newton’s talent at an early stage, but could not coax the lad away from his hammers and chisels. However, in the latter half of 1659 his mother decided to pull him out of school to run the family estate. Despite being put in the care of a trusty servant, his obsession with building waterwheels and other models and a capacity to be lost in his books made Newton completely unsuitable for the task. The sheep and cows he was supposed to be looking after strayed into neighbouring fields, and records show that he was fined for this in October of the same year. He could barely remember to eat and, according to Stukeley, ‘philosophy absorbed all his thoughts’. To the rescue came Stokes, who told Hannah that Newton’s immense talent should not be buried in ‘rustic business’. He saw ‘the uncommon capacity of the lad, & admired his surprising inventions, the dexterity of his hand, as well as his wonderful penetration, far beyond his years’, telling his mother that he ‘would become a very extraordinary man’. Stokes offered to let him board for free, possibly a key factor in Hannah allowing her son to go back to the grammar school to prepare for university. Returning there in the autumn of 1660, he received extra tuition in Latin and Greek, and on his final day was given a rousing send-off by Stokes, allegedly driving the rest of the school to tears. Stukeley noted that no such sentiment was felt by the servants, who declared him ‘fit for nothing but the Versity’. Newton Trinity By this time it had already been decided that he would go to Trinity College Cambridge, the most prestigious college in England. The combined forces of William Ayscough and Humphrey Babington, newly restored as a fellow, were probably decisive in sending Newton there. Newton arrived in Cambridge on 5 June 1661 in the relatively menial position of ‘subsizar’, a lowly status strangely out of keeping with the wealth that his mother commanded. Subsizars, who had to pay for their own food and also to attend lectures, were effectively servants of fellows or wealthy students, and it is possible that Newton worked in this position, however notionally, for Babington. Both town and gown had reacted quickly and positively to the restoration of Charles II the previous spring, and in the most senior positions royalist sympathizers had replaced Commonwealth appointees. The Anglican scholar John Pearson, author of the highly influential Exposition of the Creed in 1659, became master in 1662, and under him the college emphasized more traditional forms of scholarship and in particular theological study. Evidence from a small notebook sheds some light on how Newton spent his time and money as an undergraduate. Early entries show 16 his purchase of basic equipment such as books, paper, pen and ink, and the ordinary materials for living in 17th-century student accommodation, such as clothes, shoes, candles, a lock for his desk, a carpet for his room, and a chamberpot. He bought a watch, a chessboard and later a set of chess pieces (according to Catherine Conduitt, he became extremely proficient at board games), and paid seven pence as his yearly subscription for access to the tennis court. The entry ‘to balls & barges’, repeated later on, indicates that not every moment was spent in study in his first year there. Indeed, he created a separate list of ‘frivolous’ and ‘wasteful’ expenses, including the purchase of cherries, beer, marmalade, custard tarts, cake, milk, butter, and cheese. Later, he graduated to apples, pears, and stewed prunes. 17 Playing philosophically Very quickly – and uniquely among undergraduates for whom records survive – Newton began to lend money to his bedmaker and to fellow students, many of them ‘pensioners’ who occupied a social rank in the college somewhat higher than his. Most recipients of Newton’s generosity paid him back, as indicated by a cross through the relevant record. At some point, probably in 1663, Newton met another pensioner, John Wickins (whose son Nicholas recorded that his father had found Newton ‘solitary and dejected’), and they decided to room together. Wickins would occasionally act as an amanuensis for Newton until he left Cambridge in 1683 to take up a position in the church. Nick Wickins was told by his father that Newton would forget his food when working and in the morning would arise ‘in a pleasant manner with the satisfaction of having found out some Proposition; without any concern for, or seeming want of his Nights sleep’. If Newton’s recollections are correct, in the same year he met Wickins, he became fascinated by judicial astrology – the assessment of an individual’s future prospects on the basis of studying the positions of the stars and planets – and bought a book on the topic. It was as a result of being dissatisfied with this that he turned the following year to the mathematics of Euclid, only to reject it as trivially obvious. Newton He probably attended the initial Lucasian mathematical lectures of Isaac Barrow, the first holder of the chair, in March 1664 – and the professor may have noted a particularly attentive student in the audience. In the month after Barrow’s inaugural lecture, Trinity held one of its periodic scholarship competitions, which Newton entered. As he told the story later, Barrow was his examiner and – never imagining that the young student had ventured into Descartes’s formidable Géometrie, a feat that Newton was apparently too modest to admit – was dismayed by Newton’s lack of knowledge of Euclid. Newton got the scholarship nevertheless, and thus became entitled to a number of privileges. Early the following year, at about the same time as he discovered the generalized binomial theorem, he was forced to undertake a protracted examination in more standard learning to qualify for his Bachelor of Arts degree. A later tradition held that he almost failed this exam, although the story may be a confusion of this event with the scholarship examination of the previous year. Plague devastated various parts of England in the middle of 1665 and, along with most other students, Newton returned home some time in late July or early August. Having come back to Cambridge in March 1666, he continued to lend money to many of the same students as before, but when a resurgence of the plague occurred in early summer, he again sought refuge in Lincolnshire. Much of his most innovative work was produced here, probably at the home of Babington in Boothby Pagnell. On 20 March 1667 he received £10 from his mother, who gave him the same amount when he returned to Cambridge in the following month. Over the next year, he spent much of this money, as well as funds repaid by debtors, on equipment for grinding tools and performing experiments, three pairs of shoes, losing at cards (twice), drinking at a tavern (twice), some early volumes of the Philosophical Transactions, Thomas Sprat’s recently published History of the Royal Society, and some oranges for his sister. In September he entered another competition, this time for a college fellowship. Whether because of support from Babington or Barrow, or simply because his brilliance 18 and dedication to scholarship shone through during the four days of the oral examination, Newton was elected minor fellow. 19 Playing philosophically Evidently, this also implied that he was expert in the sort of theological scholarship demanded by Pearson and, as a consequence of his election, he swore to make theology the focus of his studies and to take holy orders – or resign. Soon afterwards he moved to a new room, and revamped it to suit his tastes. In July 1668 he was made a Master of Arts, allowing him to progress to the position of major fellow of the college. He spent more money on material for his gown, and purchased an expensive hat, a suit, some leather carpets, a couch (jointly bought with Wickins), and some materials for a new featherbed. He also bought three prisms at one shilling each, along with ‘glasses’, presumably for chemical experiments, while in late summer he made his first trip to London. His reputation would soon follow him. Chapter 3 The marvellous years The first decades of the 17th century witnessed an exponential growth in the understanding of the Earth and heavens, a process usually referred to as the Scientific Revolution. The older reliance on the philosophy of Aristotle was fast waning in universities, although across Europe Aristotelian natural philosophy and ethics would be routinely taught at undergraduate level until the end of the century. In the Aristotelian system of natural philosophy, the movements of bodies were explained ‘causally’ in terms of the amount of the four elements (earth, water, air, fire) that they possessed, and objects moved up or down to their ‘natural’ place depending on the preponderance of given elements of which they were composed. Natural philosophy was routinely contrasted with mathematics or ‘mixed mathematical’ subjects such as optics, hydrostatics, and harmonics, where numbers could be applied to measurable external quantities such as length or duration. All this took place in a cosmos where the Earth was planted at the centre, surrounded by the Sun and the planets. The first dramatic change took place in astronomy, where despite official opposition from the Catholic Church and from many Protestant denominations, the Copernican heliocentric (sun-centred) system gained new converts. Between 1596 and 1610, there was an astronomical revolution galvanized by the work of Johannes Kepler and Galileo Galilei. Kepler’s Mysterium 20 Cosmgraphicum of 1596 posited a heliocentric system in which the distances between the planets could be determined by inscribing the orbits of the planets inside regular solids. He published a magnetic theory of planetary motion in his great Astronomia Nova of 1609, a treatise that contained the first two of what were later known as Kepler’s Laws (that planets move in ellipses, and that with respect to the Sun, located at one of the foci of a particular orbit, all planets swept out equal areas in equal times). Galileo’s contribution to 17th-century science did not end with his work in astronomy. In 1632 he bravely published his Dialogo sopra i due Massimi Sistemi, a work which attempted to prove the Copernican system of the world. For this he was placed under house arrest until the end of his life in 1642, although his brilliant Discorsi e Demonstrazioni Matematiche Intorno a Due Nuove Scienze appeared in 1638. Aristotle had assumed that projected bodies first experienced ‘violent’ motion, which was then taken over by the ‘natural’ motion that drove the earthy particles of the object downwards to their natural place. He had also argued that bodies 21 The marvellous years In 1609 Galileo developed a combination of lenses into a device that allowed him to magnify objects. He turned this ‘telescope’ to the heavens and realized that Jupiter had a series of satellites that orbited it, just as the planets orbited the Sun. In his short Sidereus Nuncius of 1610, he also announced that the Moon had mountains and valleys, and that the Milky Way was composed of thousands of stars. In 1613 he would further challenge the standard view, which held that the heavens were ‘incorruptible’, by demonstrating that the Sun had spots. Kepler would add his Third Law in his Harmonice Mundi in 1619, which stated that for any planetary orbit, the ratio between the cube of the mean radius of the planet from the Sun, and the square of its period of revolution, was constant. While Galileo’s discoveries effectively demolished belief in the perfection of the heavens, Kepler’s laws would be of central importance for Newton in demonstrating key propositions in the Principia. Newton fell at speeds proportional to their weight. Instead, Galileo announced in the Discorsi that the trajectory of projectiles was parabolic, while the vertical component of a body near the surface of the Earth could be expressed as a law according to which – for bodies of any weight, or ‘bulk’ – the total distance fallen vertically is proportional to the square of the time taken. He also made it clear, again in opposition to the entire Aristotelian project, that the physical causes of gravity were unimportant, and indeed, would be extremely difficult to uncover. In showing that a number of phenomena in the terrestrial sphere were mathematizable, Galileo laid the basis for the modern science of mechanics. Newton’s great triumph – expressed in his momentous work of the same name – was to show that ‘mathematical principles’ were at the basis of many more natural phenomena. Another essential dimension of modern science was outlined in the work of Francis Bacon. At the same time that Galileo and Kepler were developing astronomy and mechanics, Bacon was promoting the idea that the proper way to understand nature was to directly engage with it rather than approach it through the medium of Aristotelian (or any other) texts. Arguing that a collaborative project was the only way to achieve progress in natural philosophy, Bacon pointed to the recent discoveries of America and the Pacific Ocean and praised the advances made by arts and trades. Observations of disparate facts would increase knowledge of the visible world while well-designed experiments would break the natural world down into its constituent parts and convey information about nature’s real secrets. Bacon even praised the way in which alchemists were prepared to analyse nature, though he lamented their closeted lifestyles and opaque jargon. Not all anti-Aristotelians agreed that Galileo’s project was the proper way to uncover scientific truths. René Descartes developed a sophisticated account of the sorts of nano-structures underlying the physical world. He assumed that the machine-like phenomena that existed in the world around us also operated at the invisible level. In 22 his mechanical philosophy, an unseen microworld was populated with hooks and screws, which made elements cohere. Large-scale phenomena such as magnetism, heat, gravity, and electricity were explained through the activity of a giant solar ‘vortex’, which by spewing out various sorts of matter had major effects on terrestrial phenomena. Descartes shared Galileo’s anti-Aristotelianism (and secretly, his and Kepler’s Copernicanism) but he accused the Italian of ‘building without foundation’, arguing that scientific explanations needed to be couched in terms of the micro-mechanical building-blocks of nature. This, as we shall see, was the most influential work for the young Newton, although it was soon the object of his critical animus. A mathematical tyro Towards the end of 1664 Newton found out how to measure the ‘crookedness’ or slope of a curve at any point. This was known as the 23 The marvellous years At first, Newton’s education, was that of a standard Cambridge undergraduate, and he was required to read a substantial amount of the prescribed theological and Aristotelian literature. It may well have been the Lucasian lectures of Barrow in the spring of 1664 that spurred his interest in serious mathematics, and Newton later recorded that he read William Oughtred’s Clavis Mathematicae and Descartes’s Géometrie about the time that Barrow began lecturing. In the winter of 1664–5 he closely studied the analytic mathematics of Descartes (and the commentary in his edition of the latter’s Géometrie by the Dutch mathematician Frans Van Schooten), François Viète’s work on algebra, and John Wallis’s ‘method of indivisibles’. Using what we call Cartesian co-ordinate geometry, he mastered the equations that defined the various conic sections (circles, parabolas, ellipses, and hyperbolas). Although he had initially underestimated the achievement of Euclid in his Elements, he would later revere the classical accomplishments of Euclid and Apollonius, taking their approach to be the template for doing mathematical work. 3. Cartesian vortices: the solar system, surrounding the Sun, S, being bounded by FFFFGG. Other systems have stars at their centre. ‘problem of tangents’, and was being developed by mathematicians such as James Gregory and René François de Sluse. Newton soon built on an approach formulated by Descartes, by which the ‘normal’ to a curve (i.e. the line perpendicular to the tangents) could be determined by finding the radius of curvature of a single large circle at the point at which it touches the curve. Newton took the ‘normals’ between two close points, allowing the distance between them to become arbitrarily small. He could now find the tangent to any point on equations that ‘expressed’ any conic section, as well as the maxima and minima of related equations. He generalized the procedure to express the basic elements of what we call differentiation, by which the slope of the tangent represents the rate of change of a curve at any point. Newton read Wallis carefully in the winter of 1664–5 and offered alternative techniques for achieving the same results. Soon he refined Wallis’s technique so as to consider the quadratures of curves with fractional powers (i.e. involving square, cube, and other roots). He went beyond Wallis by finding the correct series to square the circle and as a result of extending the insights gained from this success, he eventually discovered the generalized binomial theorem (i.e. for fractional as well as integral powers) for expanding any 25 The marvellous years As early as the winter of 1663–4 he had begun to read Wallis’s analysis of the ways in which areas under sections of a curve could be found by dividing the space into infinitely small sections. By the time Wallis published his Arithmetica Infinitorum in 1655, it was known that for basic equations x = yn , the area under the curve between 0 and a was an + 1/n + 1. This was known as ‘squaring’ or ‘quadratures’, and was the embryonic form of what we now call integration. More complex equations demanded different techniques such as the use of infinite series, which allowed an approximation to a final value as a series of terms reached a limit. Wallis had developed this idea, squaring the parabola and hyperbola and discovering a series of terms that approached the value of π. Newton equation of the form (a + x)n/m, publicly announced for the first time in a letter to Leibniz in 1676. Early in 1665 Newton understood generally that the techniques of tangents and of quadratures were inverse operations, that is, he had the fundamental theorem of the calculus. By late 1665, and possibly in imitation of Barrow, he was routinely treating curves as points that carved out lines in a virtual space under certain conditions, and he referred to the ‘velocities’ that points experienced in given moments of time. This was what he called the ‘fluxional’ calculus, because the values of points on the curve ‘flowed’ from one point to the next. Areas under curves could now be treated not just as sums of infinitely small segments, but as areas ‘kinematically’ created by considering the space traversed by lines connecting a moving point to corresponding values directly beneath the point on the x-axis. Most of this brilliant work was systematized in an extraordinary essay of October 1666, a treatise that marked him out as the leading mathematician in the world. The apple The story that Newton was prompted by a falling apple to think of comparing the force that caused the apple to fall with that required to keep the Moon in its orbit is arguably the best known tale in the history of science. Whether or not it is true, at the same time as he made his mathematical discoveries he was branching out into an extraordinary series of researches into mechanics that would make him the first to unite the forces governing motions on earth and in the heavens. By his own admission, Newton began his novel insights by discovering the law by which a revolving body was kept in its orbit. He soon wrote out a series of laws of motion, many of which he would recall (and develop) when he wrote the Principia 20 years later. In a notebook entitled the ‘Waste Book’, in early 1665 he wrote out over a hundred axioms of motion. These embraced the basic notion of inertia while he also invoked a metaphysical justification for holding that the effects of impacts had 26 to be equal to their cause, an embryonic version of what would be the third Law of Motion in his Principia. Taking into account the bulk of a body and its velocity, Newton’s exquisite analysis led to a law stating the conservation of momentum (mv) before and after impact. Newton now realized that he could attack a problem first raised by Galileo, namely the ratio between the force that keeps an object on Earth (gravity) with the ‘centrifugal force’, the tendency of the same body to be flung off into space by the Earth’s rotation. For the first he independently derived g, the acceleration due to gravity. For the second he determined that centrifugal force would propel a body in one revolution of the Earth through the length 2π2r, and with a value for the size of the Earth he concluded that the force of gravity was about 350 times stronger than centrifugal force (in one second gravity would make a body descend 16 feet, while centrifugal force would make it travel just over half an inch). 27 The marvellous years Next, Newton adroitly investigated the path of a body being bounced from the sides of an enclosed square, imagining that the sum total of the four impacts exerted by each side of the square was analogous and equal to the total force that would be required to keep a body in orbit around a central point. On the assumption that the number of sides exerting an impact could be made infinitely large (so that it was a circle), he concluded that the total force required to keep the body moving in a circle in one revolution was ‘to the force of the bodies motion as all those sides [i.e. the circumference of the circle] to the radius’. If the ‘force of the bodies motion’ was mv, then the total force exerted in one revolution was 2πmv. If the time taken for one revolution was 2πr/v, then the force divided by the time, expressing the force acting on a revolving body at a given instant, was mv2/r. This seminal result in the development of mechanics was first published by Christiaan Huygens in 1673, although years before this Newton had already used it to go beyond what Huygens would achieve. Newton Perhaps influenced by seeing the fall of the apple, in the late 1660s Newton compared the tendency of the Moon to leave the Earth with the force of gravity at the Earth’s surface, a problem suggested by Galileo. By using a figure for the size of the Earth that made the Moon about 60 Earth radii (i.e. the distance from the centre of the Earth to the equator) distant, he deduced that the tendency of an object to recede from the Earth’s equator (its centrifugal force) was about 12 and a half times that of the Moon to recede from the Earth. If the regularity of the Moon’s orbit required the centrifugal force to balance the centrally directed attraction exerted by the Earth, then the centrifugal force of the Moon was equal to 350 × 12.5 (= 4325) times the gravitational pull of the Earth at its surface. In the same manuscript in which he made this calculation, Newton derived the inverse-square (1/r2 ) distance law for the force exerted on a revolving body by inserting his own law for the force of a revolving body into Kepler’s Third Law. Newton would later recall that his figure for the force keeping the Moon in its orbit (i.e. 4325) ‘answered pretty nearly’ to that produced by taking into account the square of the distance between the Moon and the Earth (602 = 3600) demanded by the inverse-square law. At this point he attributed the difference between these results to the effects of a terrestrial vortex; later he would realize that it was due to an incorrect measurement for the size of the Earth. He would also come to see this incredible effort as evidence for his priority in devising Universal Gravitation. However, amazing as it was, it lacked many of the elements of his great theory. Philosophical questions These interests by no means exhausted Newton’s scientific fertility, and in another notebook he took a series of notes from Aristotelian texts and from commentaries on them. These covered subjects in the general curriculum that would be studied by any student in a European university, such as ethics, logic, rhetoric, and natural philosophy. At some point, probably late in 1664, he stopped taking 28 excerpts from the Aristotelian textbooks and entered a series of notes and philosophical queries under the heading ‘Certain Philosophical Questions’. Above the title he noted a common phrase that in English reads ‘Plato is my friend, Aristotle is my friend, but truth is a greater friend’. Newton would remain committed to a Cartesian-style vortex until the early 1680s. The finest parts of the vortex he termed the ‘ethereall mater’, although later he would use the word ‘aether’ to distinguish this pervasive but undetectable medium from the coarser ‘air’. He queried whether the agitation of the vortex caused objects to heat up, and also wondered whether heat was caused by air moved by light, or directly by light itself. He also posed the question of whether water could be made to freeze by removing its heat inside Boyle’s air-pump (which evacuated or compressed air inside a glass chamber). As for the downward motion of the 29 The marvellous years The initial entries in the ‘Philosophical Questions’ notebook were composed under headings concerning the nature of matter, the reason why some tiny bodies ‘cohered’ together to form larger bodies, the nature of heat and cold, and the question of why some bodies fell and some rose. He made compelling criticisms of conventional views, and indeed the general topics on which he commented would be the focus of his interest for the rest of his life. The earliest entries have a metaphysical flavour to them, which is very different from the more experimental approach he would soon adopt. Regarding the nature of matter, for example, he followed Henry More in the latter’s Immortality of the Soul (1659) and noted that the primary building-blocks of the physical world must be atoms. Unlike ‘mathematicall points’, matter could not be divided into infinity, since an aggregation of infinitely small parts, no matter how small they are, could not make a finite object. Regarding cohesion, Newton drew on the Cartesian assumption that a solar ‘vortex’ spewed out a rarefied matter that gave rise to the atmosphere; this in turn ‘pressed down’ on the Earth causing ‘a close crouding of all the matter in the world’. Newton matter that caused gravity, it must rise again in a different form because (a) otherwise the underground cavities of the Earth would swell, and (b) the upward rising matter would cancel out the downward, and there would be no gravity. He also argued that the ascending matter had to be ‘grosser’ than the descending matter, otherwise it would impact upon more (i.e. internal) ‘parts’ of large bodies and hence give a more powerful upward than downward force. This interest in a cyclical cosmos never waned, and its significance can be seen in his later alchemical and scientific work. Even heavenly phenomena could be investigated by experiment. Notes from Descartes’s Principia about the nature of comets were followed immediately by Newton’s own observations of the comet of December 1664, an event whose demands on his time and energy he would later remember as making him ‘disordered’. Newton noted that the comet moved north ‘against the streame of the Vortex’ and he proposed extraordinary experiments for testing the possible effects of the lunar vortex. Did the Moon’s influence cause tides? No, he suggested initially, because they would be least when there was a new moon but this did not happen. Nevertheless, it might be possible to get a tube of mercury or water and see whether the height of liquid in the tube was affected by the various aspects of the Moon. At each point Newton proposed experiments for deciding central philosophical questions. No other undergraduate did anything like it. He put forward a series of tests for determining the specific gravity of different elements, and also for ascertaining whether the weight of bodies was affected by being heated or cooled, or by being moved to different places or heights. Fascinatingly, given his theory of gravity, he also queried whether the ‘rays’ of gravity could be reflected or refracted like light. If some of the gravity rays could be made to strike a horizontal wheel with slats angled at a particular degree to make it turn like a windmill, or if they were only allowed to make contact with one half of a vertical wheel in order to make it 30 revolve, then maybe there could be perpetual motion. Similarly, he posed a series of queries elsewhere in the notebook for deriving perpetual work from magnetical rays. Perhaps, by transmitting these rays, a magnet could produce revolutions in a red-hot iron shaped into sails like those of a windmill? Presumably to test these views, he purchased a high-quality magnet in 1667 and a short time later performed a series of highly original experiments with magnetic filings. 4. Two ideas for perpetual motion machines powered by gravitational waves, from Newton’s Trinity College ‘Philosophical Questions’ notebook 31 The marvellous years Questions about the nature of air and water were again prompted by his reading of Descartes’s Principia Philosophiae, and the latter’s account of the micro-structures of hard and soft bodies took up much of his energy. Here, as elsewhere, Newton proposed the use of Boyle’s air-pump to resolve abstruse theoretical conjectures, many of them concerning the aether. The refraction of light, for example, did take place in an evacuated air-pump, so that it had to be caused by ‘the same subtile matter in the aire & in vacuo’. But was the extent of refraction the same in different kinds of glass? Boyle had not considered this, but Newton did, and indeed he had access to an air-pump in Christ’s College. Of mind and body Many entries in the ‘Philosophical Questions’ notebook are concerned with the nature and precise location of the soul, and the respective roles that the internal, subjective mind and external bodies played in experience. From the beginning Newton was fascinated by what we would call the mind–body problem, and also by the fact that different people had varied reactions to the same cause. Under the heading ‘Of sympathie or antipathie’ he noted that To one pallate that is sweete which is bitter to another. The same thing smells gratefully to one displeasingly to another . . . Objects of sight move not some but cast others into an extasie. Musicall aires Newton are not heard by all with alike pleasure. The like of touching. In another section entitled ‘Of Sensation’ (in notes taken from More’s Immortality), he observed that ‘to them of Java Pepper is cold’. In the same series of notes Newton also remarked on the various locations of the brain that philosophers had invoked as the seat of the soul. He recorded various phenomena demonstrating that the brain could be badly damaged without affecting sensation. A frog would have its ‘sence & motion’ taken away if its brain was ‘peirced’, but a human would retain the use of his senses unless the piercing penetrated to the main blood vessels. A man could not, apparently, see through the hole that a trepan (or drill) made in his head, but ‘the least weight upon a mans brain when hee is trepanned maketh him wholly devoyd of sensation & motion’. A key element of his early research programme concerned the nature of free will, and the associated problem of how the soul was linked to the rest of the body. Some bodily motion was unconscious. Under the general heading ‘Of Motion’, Newton recorded that many human actions were purely mechanical: musicians could play without thinking, singers sing ‘neither minding nor missing a note’, 32 and people walked without being conscious of how they did so. Vomiting induced by sticking a whalebone down one’s throat was another example of an action that was purely mechanical, and it apparently proved the actions of animals to be ‘mechanicall and independent of soules’. In another extraordinary short essay entitled ‘Of Creation’, he discussed the ‘souls’ of animals, which most philosophers of his day believed were of a completely separate nature from those of humans. Newton suggested that there was a sort of primordial ‘irrationall soule’ which when joined to different kinds of animal bodies made all the various brutes that now existed. In shorthand (because of the daring nature of his argument), he suggested that to say that God initially made specific souls for specific species was to assert that he had done more work than he needed. The differences between species arose from their instincts, which depended on the make-up of their bodies. More radically still, he argued that human souls were basically alike, and that the differences between people arose merely from distinctions in their constitutions. In a short, separate entry on God, he noted that neither men nor beasts could be the result of ‘fortuitous jumblings of attomes’. There would have been many useless parts, ‘here a lumpe of flesh there a member too 33 The marvellous years Nevertheless, Newton’s account of the soul involved a vigorous rebuttal of any purely mechanical explanation for its actions. Like most of his contemporaries he did not want to be tainted with the atheistic reputation of mechanical philosophers such as Descartes and Thomas Hobbes. As the faculty of the soul linked to personal identity, memory offered significant evidence relating to the springs of human action. Blows to the head could cause it to disappear completely, while it could be reactivated by similar events occurring much later. In an entry entitled ‘Of the soule’ he argued that memory consisted of more than the action of ‘modified matter’, and that there had to be a ‘principle’ within us that enabled us to call something to mind once the original action had ceased. This insight would be one of the cruxes of Newton’s later natural philosophy. Newton much some kinds of beasts might have had but one eye some more than two’. The most stunning attempt to distinguish between the actions of the soul and body began with a series of notes on the nature of the ‘imagination’ (or ‘fancy’) and creativity. The former was a faculty of the soul that produced images such as those found in dreams and memory. Newton argued that the imagination was helped by viewing things ‘in a right posture with the heeles upward’, as well as by ‘good aire fasting moderate wine’. However, it was ruined by ‘drunkenesse, Gluttony, too much study, (whence & from extreame passion cometh madnesse), dizzinesse commotions of the spirits’. ‘Meditation’, Newton warned, heated the brain in some ‘to distraction’, and in others led to ‘an akeing & dizzinesse’. It was possible to train the imagination to do new things, and from Joseph Glanvill’s Vanity of Dogmatizing (1661), Newton noted a famous story of an Oxford scholar who had learnt mind control from gypsies ‘by heitning his fansie & immagination’. Some time later than his entry on the Oxford scholar, but immediately following it in the text, he recorded a series of his own experiments on imagination and vision. At some point in 1665, he undertook a series of dangerous experiments on his own sight that involved staring at the Sun for an extended period of time. These were reported as subjective experiences, but his detailed description of a series of trials indicated an objective detachment. After he had stared at the Sun for some time with one eye, he noted that all light-coloured objects appeared to be red, while dark objects looked blueish. At first glance white paper appeared red when looked at with the damaged eye, but the same paper looked green ‘if I looked on it through a very little hole so that a little light could come to my eye’. The experiment was by no means concluded, for when (as he thought) the motion of ‘spirits’ in his eye had died down, he could produce an after-image of the Sun by shutting his eye. There 34 appeared a blue spot, which grew lighter in the middle, gradually being encompassed by concentric circles of red, yellow, green, blue, and purple. Varying the experiment under different conditions, he noted that the spot would sometimes turn red. When he opened his eye again, he would see colours in exactly the same way as after the initial experiment. He concluded that the Sun and his imagination had exactly the same manner of working on the spirits in his optic nerve and brain. Outside, he looked at a cloud and witnessed the same reddish effects (‘onely for the most part blacker’) as when he stared at the white paper, and after a while he could make a spot ‘glitter amidst the dusky red’ when he looked at a cloud that was so bright his eyes watered. A new theory of light and colours Some time after the initial entry on colours, Newton recorded a series of experiments with prisms on a new page with the same 35 The marvellous years The fact that this only constituted the first of a series of such experiments says a great deal about Newton’s uniquely intense dedication to his task. After giving his eye some respite, he waited until an hour before dusk and repeated all of the previous experiment. Now, when he looked with his good eye on white objects such as paper or clouds, he could see an image of the Sun against their background, the image being surrounded by ‘a dusky red & blacknesse’. He found it almost impossible to avoid seeing a solar image, unless he tried hard to set his imagination on other tasks. When the image of the sun was just about bearable in either eye, he could envisage several shapes in the place where the sun had been, ‘whence perhaps may be gathered that the tenderest sight argues the clearest fantasie of things visible’. He added: ‘hence something of the nature of madnesse & dreames may be gathered’. Such was the enduring power of these trials, that Newton recounted them in detail to John Locke in 1691, and did so again to John Conduitt in 1726, telling him that he could still conjure up an image of the Sun if he put his mind to it. Newton heading. With these, he not only refuted the Aristotelian notion of light and colour, but he also challenged the treatments of the topic to be found in the recent work of Descartes, Boyle, and Hooke. The exact date at which he embarked on these investigations is unclear, but in later accounts, he placed the initial impetus for his research in his efforts to replicate Descartes’s report of experiments with a prism in his Dioptrique. In this work, Descartes had argued that the colours produced by transmitting light through a prism on to a wall about 50cm away from the prism served to explain the processes involved in creating a rainbow. At some point, Newton acquired a prism in order to reproduce this ‘celebrated phenomena of colours’, but the earliest experimental entries in the ‘Philosophical Questions’ notebook refer to two instruments. The very first comment in the new section on colours was a proposal to test whether a mixture of prismatic red and blue made white. Already he had criticized older theories that held colour to be a mixture of black and white, or which assumed that colours arose through the mixing of shadows with light. Elsewhere in the notebook, Newton had also subjected to criticism the notion that light was caused by pressure. This had to be false, for the pressure of the vortex bearing down on us would make us see a bright light all the time, while one would be able to see in the dark merely by running. Finally, he attacked wave theories of light on the grounds that light travelled in straight lines, whereas waves or ‘pulses’ through an aetherial medium would not. Early on, he became committed to the idea that light was composed of corpuscles, or globules, an assumption that ran directly counter to the ‘pulse’ view outlined in the recently published Micrographia of Robert Hooke. The key observation was described in the third of a series, in which he examined a thread – one half coloured blue and the other red – through a prism. One half, he noted, ‘shall appear higher than the other & not both in one direct line, by reason of unequall refractions in the 2 differing colours’. He explained this differential refrangibility in terms of the underlying speed of the light ‘globules’, 36 assuming that the slower moving rays were refracted differently from the quicker, and that the blues and purples constituted the slower rays. He inferred that bodies appeared as red or yellow whenever the slower rays were absorbed, and were seen as blue, green, and purple whenever the faster rays were not reflected. This was the basis of his later, more sophisticated account of how colours arise in natural bodies in terms of their disposition to ‘exhibit’ certain sorts of rays. As slow or fast moving globules, coloured rays were permanent features of ordinary light – which was a complex mixture of them – and individual rays were revealed but not produced by prismatic refraction. This ran counter to the universally accepted notion that prismatic colours arose through ‘modifications’ caused by refraction, and threatened both Aristotelian and standard mechanistic explanations of light and colour. Measuring refractions Newton continued his optical experiments in a so-called ‘chemical’ notebook, in which he entered another essay called ‘Of Colours’. This was a radically different undertaking, which began with an account of examining a bi-coloured thread through a prism, but which then listed a series of highly original experiments on reflection and refraction. Where contemporaries (who had not 37 The marvellous years Nor was his work at this point separate from his understanding of the way in which the eye contributed to the experience of colours, and he proceeded to undertake a series of ocular experiments every bit as damaging as the sun-gazing trials. He deformed his eye by violently pressing it on one side, thus producing a number of ‘apparitions’, and then noted that he made a ‘very vivid impression’ by ‘puting a brasse plate betwixt my eye & the bone nigher to the midst of the tunica retina than I could put my finger’. Newton repeated the act on a number of occasions, trying it in the dark, and also with various degrees of pressure. Needless to say, no other individual of the period did anything like this. Newton known of differential refrangibility) had at most projected refracted rays a metre or so, Newton showed that different coloured rays had different indexes of refraction by projecting refracted rays onto a wall about 7m (22 feet 4 inches) away. In a dark room he let sunlight in through a tiny hole in the curtains, finding that when refracted through a triangular prism, the rays produced an oblong and not a circular shape on the wall. As he had noted before, blue rays were refracted more than red, although he was also careful to note that redness and blueness were not intrinsic to rays but were how specific rays appeared to the eye. With exceptionally precise measurements, he now determined that differently coloured rays emerging from the prism had their own specific degrees of refraction, a fact that no one until then had noticed. Later in the series of experiments, he described a more complex arrangement in which the rays emerging from the prism were further refracted through a second. Blue and red rays each suffered the same degree of refraction as they had done from the first prism, and Newton noted that individually coloured rays were not further modified into other colours when refracted through the second prism. Introducing a third prism and setting them all parallel, he allowed emerging rays from all the prisms to overlap with each other; as he noted, ‘where the Reds, yellows, Greenes, blews, & Purples of the severall Prismes are blended together there appears a white’. With these experiments he now had the fundamental features of what was to be his mature theory of light and colour. Ignoring his account of globules, he argued that white light was not a basic entity that gave rise to colours by being ‘modified’. Instead, it was composed of a number (Newton did not at this point specify how many) of different primary rays, each of which had its own immutable index of refraction. Another significant observation was his analysis of thin coloured films, a phenomenon originally observed by Hooke. Examining a flat piece of glass through a lens, placed as close to the glass as possible, one could see concentric rings of different colours. By 38 considering the radius of curvature of the lens, Newton went as far as measuring the film of air that existed between the concentric rings and the plate to nearly one hundred thousandth of an inch. He developed this analysis in about 1670 or 1671, producing results that appeared first in his ‘Discourse of Observations’ sent to the Royal Society at the end of 1675, and then later in his Opticks of 1704. His main discovery was that the thickness of the film at any point was proportional to the square of the diameter of each circle. In addition to this, the difficulty he and others experienced in trying to bring about contact between the two pieces of glass would later constitute central evidence for the existence of short-range repulsive forces. Later, Newton stated that his discovery of chromatic aberration had put an end to his efforts to improve the grinding of lenses for refracting telescopes. Descartes had suggested that a lens ground into either of two conic sections (hyperbola or ellipse) would produce the clear image that could not be obtained with a spherical lens (because of the sine law of refraction). Newton himself had spent many hours attempting to do the same, and had recorded his results in the Waste Book. But chromatic aberration rendered all such attempts redundant, as different colours would be refracted differently and could not be brought to make a sharp image. If refracting telescopes were out of the question (though Newton did not entirely give up the idea), then perhaps he could make one that 39 The marvellous years The second essay ‘Of colours’ also demonstrated vividly that eye experiments remained a central part of his project. Having dispensed with a brass plate as a valid tool, he got hold of a ‘bodkin’, a sewing implement for making holes in fabric, and once more thrust it into the recess behind his eye ‘as neare to the backside of my eye as I could’. As before, a number of circles appeared, and as he put it, they were ‘plainest when I continued to rub my eye with the point of the bodkin, but if I held my eye & the bodkin still, though I continued to presse my eye with it,’ the circles would ‘grow faint & often disappeare until I renewed them by moving my eye or the bodkin’. Newton 5. Newton’s drawing of his deformation of his eye by means of a bodkin used a mirror? Where contemporaries had merely discussed the theoretical possibility of constructing such an instrument, Newton went ahead and built a successful version, making every aspect of the device with his own hands. The metal easily tarnished and the image was devoid of colour, but it solved the problem of chromatic aberration and magnified as much as a good refractor. It was a remarkable achievement, and one for which Newton – reprising his Grantham role – became famous at Cambridge. 40 Chapter 4 The censorious multitude The major turn that Newton’s life took after he became a major fellow of the college in 1668 was to a large extent facilitated by Isaac Barrow, who had by now recognized Newton’s potential. He thanked Newton (although not by name) for help in revising his Eighteen lectures on optical phenomena of 1669, and Newton almost certainly attended his Lucasian lectures on geometrical optics in 1667 and 1668. Barrow was presumably unaware of the radical nature of Newton’s work in that area but with his support, Newton was elected as his successor in the Lucasian Chair in September 1669. Early in 1669 Barrow had shown Newton a copy of Nicholas Mercator’s Logarithmotechnia, published at the end of the previous year. Mercator had discovered a way of deriving values for logarithms by using infinite series; Newton claimed later that when he read the work, he had assumed (wrongly) that Mercator had uncovered the generalized binomial theorem for expanding polynomials with fractional powers. In any case, seeing Mercator’s book and realizing that Mercator had begun to ‘square’ terms to produce infinite series prompted him to compose a remarkable mathematical tour de force, now known as ‘On analysis by infinite series’ (or ‘De Analysi’). He did not specify the binomial theorem in this work but, amongst other treasures, laid out a number of infinite series that approximated to values for sin x and cos x, along with techniques for 41 Newton integrating the cycloid and the quadratrix. He announced that the methods of tangents and quadratures were inverse techniques, and drew from the October 1666 tract to offer a powerful basis for his method of fluxions. He would draw from ‘On analysis’ in two major mathematical letters written to Leibniz in 1676. Barrow communicated this work to the London mathematician John Collins at the end of July 1669, revealing Newton’s authorial identity a month later. Infinite series were all the rage, and via Collins, Newton’s achievements, as well as the actual text, came to the attention of other mathematicians. In fact, in November Newton met Collins in London, where they discussed his reflecting telescope, series expansions, harmonic ratios, and the fact that Newton ground his own lenses. However, Collins noted that he was unwilling to disclose the general method underlying his work. At this time Barrow asked Newton to comment on the Algebra of Gerard Kinckhuysen, which Collins had recently translated. Newton’s extensive remarks were never published but in any case he exhibited what Collins thought was a bizarre unwillingness for his name to be attached to the piece. He made it clear to Collins in September 1671 that he wanted his work to appear anonymously – if it appeared at all – and he had no desire ‘to gain the esteeme of one ambitious among the croud to have my scribbles printed’. This attitude would govern his relations with potential audiences for his work for the next three decades. Newton’s Lucasian lectures on geometrical optics differed dramatically from those given by his predecessor. He employed a barrage of experiments, prisms, and lenses to corroborate his theory of the heterogeneity of white light and placed a major emphasis on the mathematical precision and certainty that attended his work, urging that natural philosophers should become geometers and should stop dealing with knowledge that was merely ‘probable’. Here was Newton’s first public pronouncement that natural philosophy could reach an absolute level of certainty and should be based on mathematical principles. 42 The cause of Newton’s disillusionment was his first contact with an international audience. Collins had already been informed by Newton of the existence of his reflector, and the topic was ‘live’ again at the end of 1671 when Barrow delivered a new version of the instrument to the Royal Society. It was much admired by the fellows, and was examined in some detail ‘by some of the most eminent in Opticall science and practise’, as the Secretary of the Society, Henry Oldenburg told him. Oldenburg told Newton that a description of the instrument’s construction and capacity had been sent to Christiaan Huygens at Paris, ‘to prevent the arrogation of such strangers, as may perhaps have seen it here, or even with you in Cambridge’. In reply Newton adopted his standard aloofness about his own invention, telling Oldenburg he had had the device in Cambridge for some years without making any great song and dance about it. He added advice on how to produce an alloy for the mirror and 43 The censorious multitude At this point Newton could have published work that would have stamped him as one of the most fertile scientists, and certainly the most brilliant mathematician the world had seen. Collins spent some time pushing him into publishing both ‘On analysis’ and a version of his optical lectures, and Newton expended a great deal of effort revising them, expanding the first (in early 1671) into a new treatise on methods of series and fluxions. He also rewrote his optical lectures in the second half of 1671, producing a new version that differed from the earlier one in that it suggested that one should measure refractions and reflections before discussing the nature of colours. However, when Collins prompted him again in April 1672, Newton told him that he had been thinking of preparing a joint publication of his optical and mathematical work, but had desisted, ‘finding already by that little use I have made of the Presse, that I shall not enjoy my former serene liberty till I have done with it’. Nevertheless, at this time his name did appear as the editor of a book on geography by Bernard Varenius, a work to which he later admitted he had added little. Newton 6. A sketch made by a member of the Royal Society of Newton’s reflecting telescope presented to them by Isaac Barrow at the end of 1671 thanked the Society for electing him a fellow. He continued his pose of modesty in accepting the offer of a fellowship of the Society, offering to convey to them whatever his ‘poore & solitary endeavours’ could do to benefit their activities. Nevertheless, a further letter revealed that he had been prompted into constructing the reflector by what was in his judgement ‘the oddest if not the most considerable detection which hath hitherto been made in 44 the operations of nature’. Oldenburg duly received Newton’s epoch-making paper early in February 1672. Newton at the Royal Society In his February paper, Newton began in the historical narrative style, relating that – in the midst of trying to grind non-spherical lenses – he had bought a prism in 1666 and passed sunlight through it in a dark room on to a wall 22 feet away in order to test the ‘phenomena of colours’. Expecting to see a circular image according to the laws of refraction, he had been ‘surprised’ to see instead that it was ‘oblong’. According to his story, he gradually removed various explanations for the elongated ‘spectrum’, including the thickness or unevenness of the glass, and made a precise measurement of the experimental set-up. The difference between the angle made by the rays entering the prism (31′ ), and 45 The censorious multitude In the years since it had been founded in 1660, the Royal Society had fashioned what was effectively an official position regarding the best way to perform and write up experiments. To a large extent, this was based on the approach adopted by Robert Boyle, who in his writings had suggested that authors adopt a ‘historical narrative’ style. This involved authors describing what they had actually done on a particular occasion in as detailed a manner as possible. Where they could, writers were to avoid any reference to hypotheses that were experimentally untestable, and they were not to make over-hasty general statements about how nature would behave in all similar cases. They were also to be modest about what they claimed, to the extent that they should not claim greater certainty for their views than was warranted by the evidence. Time and the replication of phenomena by many other people on a number of occasions would prove the truth or otherwise of any statement. Boyle thought that some mathematically inclined natural philosophers were over-confident in applying mathematical techniques to the natural world, and in claiming an unwarranted degree of certainty for their work. Newton by those leaving (2° 49′ ), was too great to be explained by the conventional laws of refraction. ‘At length’, he noted, he came to what he termed the experimentum crucis (crucial experiment, a term derived from the Baconian phrase instantia crucis). This was a refined if obscurely rendered version of the two-prism experiment described in the most mature of his essays on colours. He took two boards, both with very small holes in them, placing one next to the window (where the first prism was placed), and a second, 12 feet away from the window. Turning the first about its axis, he allowed different coloured rays to pass through the hole in the second board and onto a second prism next to it on the other side. As would become much clearer later, the experiment was supposed to show that, although they all had the same angle of incidence to the second prism, each individual coloured ray experienced the same degree of refraction emerging from the second as it had from the first. The degree of refrangibility was not modified by the second prism and thus every coloured ray had an intrinsic ‘predisposition . . . to suffer a particular degree of refraction’. Chromatic aberration, he commented, placed limits on the sort of precision that could be gained from refracting telescopes. Halfway through the text Newton gave up on the historical narrative method, claiming that continuing in that vein would make his paper ‘tedious and confused’. Natural philosophers, he said, would be amazed to find that the theory of colours was a ‘science’ based on mathematical principles; it was not hypothetical, but was absolutely certain, being based on incontrovertible experiments. In the remainder of the paper he offered to lay down the ‘doctrine’ of his theory, adding one or two experiments to serve as illustrations. A ray of a particular sort ‘obstinately retained its colour’ when passed through successive prisms, ‘notwithstanding my utmost endeavours to change it’. Most wonderful of all, he exulted, was the fact that white light was composed of all the primary rays being brought together. His theory could explain the colours of all natural bodies, which were seen as a particular colour 46 because of their tendency to reflect certain rays and not others. He concluded by saying that it was much more difficult to determine what light actually was, or how it was refracted, or ‘by what modes or actions it produceth in our minds the Phantasms of Colours’, although he offered a hostage to fortune by asserting that it could perhaps no longer be denied that light was corporeal (i.e. made up of bodies). However, the last claim was not essential to his argument, he said, and he would not ‘mingle conjectures with certainties’. The essay was not merely the most radical challenge to accepted views about optics in modern history, but was a clear statement about what Newton took to be the proper way to investigate and justify scientific claims. In reply, Oldenburg remarked that the fellows had considered the paper with ‘a singular attention and an uncommon applause’, and had asked for it to be printed in the Philosophical Transactions. He also mentioned that the Society had decided that some of its members should attempt to repeat the experiments described in the paper, as well as some other relevant ones. Newton replied that he had sent his paper to the Society on 47 The censorious multitude 7. A reproduction of the crucial experiment, from the 2nd French edition of Newton’s Opticks account of their being the ‘most candid & able Judges in philosophicall matters’, and remarked that he deemed it a ‘great ‘privilege that instead of exposing discourses to a prejudic’t & censorious multitude (by which many truths have been baffled & lost)’, he could now ‘with freedom’ turn his attention ‘to so judicious & impartiall an Assembly’. Newton The trouble with hypotheses The combined publication of the description of the telescope and the paper on light and colours made him famous. A number of contemporary philosophers, most notably Christiaan Huygens, expressed their approval. However, the Royal Society’s star performer, Robert Hooke, wrote to Oldenburg within a week to say that he had grave reservations about the theory. Although he agreed that the phenomenon was true, he did not believe that differential refrangibility could only be explained by Newton’s theory of the heterogeneity of white light, nor did he agree that it showed that light was corporeal. Hooke announced that he had found similar effects before, and he could not agree that Newton’s theory of white light was as certain as Newton made it out to be. Hooke’s own hypothesis, namely that light was a pulse or motion transmitted through an undifferentiated and invisible medium – with colour being a modification of light caused by refraction – was, he asserted, based on hundreds of experiments. If Newton really did have a single compelling crucial experiment that proved his own thesis, then Hooke would readily concur with Newton’s theory. However, he could think of numerous other hypotheses that would also explain what had happened. Why should all the motions that make up colour be in the white light before it hit the prism? There was no necessity for this to be the case, any more than there was that the sounds were ‘in’ the bellows that later issued from the pipes of an organ. Newton’s theory was merely a hypothesis, if a ‘very subtill and ingenious one’, and not nearly so certain as a mathematical demonstration. 48 Newton’s lengthy response to Hooke of June 1672 used a wealth of data from his optical lectures as well as from his laboratory notebook, and in itself was a major contribution to optics. The reply started with a haughty rebuke about Hooke’s behaviour. He should have ‘obliged’ Newton with a private letter, while the ‘hypothesis’ Hooke had ascribed to him was not the one Newton had expressed in his paper – for nothing hung on whether light were a body or not. Ignoring ‘hypotheses’, which he despised, Newton had spoken of light ‘in generall termes, considering it abstractedly as something or other propagated every way in straight lines from luminous bodies, without determining what that thing is’. Hooke could scarcely mistake the tone. In a letter to a senior member of the Royal Society he noted that he had since performed further experiments with prisms and coloured rings, as Newton had suggested, but remained unconvinced by Newton’s theory. Nevertheless, he added that he was sorry if Newton had been offended by what he had written, since it had never been meant for his sight. Hooke stressed that he did have good evidence for his views, and indeed he had produced diffraction experiments which 49 The censorious multitude Newton then launched a direct assault on Hooke’s wave theory of light, using ar